>科技>>正文

AI芯片简识

原标题:AI芯片简识

本篇重点讲述何为AI芯片,AI芯片的分类,不同AI芯片的对比,AI芯片的主流技术路线,AI芯片产业概况,国外国内AI芯片和企业发展情况,最后小结AI芯片发展的预期。

世间事分为可以计算和不可以计算,例如你给你女朋友买的礼物是可以计算的,但是您对你女朋友的爱是不可以计算的。类似在科技网络领域更狠的事是,即使不可以计算也需要算力来告诉不可以计算,所以现在几乎所有工作的背后都会涉及到算力:AI芯片。

所以对于对科技网络感兴趣的人懂不懂芯片,芯片都无时无刻的存在着,并支撑着我们的PC、手机、汽车、轮船、交通、工业制造等等生活工作的方方面面。

且随着深度学习(DNN)算法需要海量数据的训练,而传统计算架构无法支撑深度学习算法的大规模计算需求,因此AI技术的发展对计算芯片提出了新的需求,

本篇重点讲述何为AI芯片,AI芯片的分类,不同AI芯片的对比,AI芯片的主流技术路线,AI芯片产业概况,国外国内AI芯片和企业发展情况,最后小结AI芯片发展的预期。

什么是AI芯片?

以下3种情况都属于AI芯片:

AI芯片按使用场景分为云端、终端两类。

其中云端主要以训练为主,终端以推理任务为主。

AI芯片的对比

不同AI芯片的对比图:

从上图可见,不同架构的芯片在通用/专用性、性能、功耗方面有各自的优点和缺点。

当然,ASIC 芯片的设计和制造需要大量的资金、较长的时间周期和工程周期,而且深度学习算法也在快速迭代。ASIC 类芯片一旦定制无法再次进行写操作,FPGA 具有硬件可升级、可迭代的优势。所以当前阶段,GPU 配合 CPU 将是人工智能芯片的主流,而后随着视觉、语音、深度学习的算法在 FPGA 上的不断优化,之后会固化到 ASIC 上以降低成本。

AI芯片的主流技术路线

时下AI芯片的2条技术路线:

技术路线的趋势是,从通用到专用,然后再由专用到另一个域的通用。

AI芯片的产业分析

从产业的角度来看,不同技术路线的企业有不同的特点。

细节如下图:

AI芯片的国外国内情况比对

从上图可见,国际科技网络巨头公司谷歌、脸书,亚马逊等等在AI芯片领域从云端训练到终端产品应用,在开源框架赋能产业行业上有一定的领先优势。

但是国内的AI芯片在业务场景上有后发优势,例如:阿里巴巴根据业务场景定制化AI芯片的平头哥半导体公司,及其刚刚从脸书挖掘的AI框架人才贾杨青等来看,国内的企业也在打造从AI芯片注重云端训练+AI芯片终端响应+AI算法框架开源的生态体系。

AI发展预期

未来面对垂直细分领域的 AI 芯片市场前景广阔,随着人工智能应用场景的细分市场越来越多,专门为某些应用场景定制的芯片性能优于通用芯片,终端芯片呈现碎片化、多样化的特点,并且目前尚未形成市场垄断,机会较多。

一个既知的事实是摩尔定律已经接近物理的极限,而AI的任务之一是深度学习,深度学习对数据的读写操作很多时候是高于计算功耗。所以未来是一方面提升AI芯片的架构性能,另外一方面提升芯片的存取单元,例如:未来需要更好的容器架构师。

AI内核有数据+算法+算力三个部分构成,本篇讲的就是内核之一的AI芯片。

期待更多分享详情见笔者的新书《AI赋能:AI重新定义产品经理》和 http://996.pm/MeANw

#专栏作家#

连诗路,公众号:LineLian。人人都是产品经理专栏作家,《产品进化论:AI+时代产品经理的思维方法》一书作者,前阿里产品专家,希望与创业者多多交流。

题图来自Unsplash, 基于CC0协议返回搜狐,查看更多

责任编辑:

声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
dnn 普通处理器 fpga asic dsp
阅读 ()
投诉
免费获取
今日搜狐热点
今日推荐