小学数学1—6年级高频知识点全汇总,快为孩子收藏!

原标题:小学数学1—6年级高频知识点全汇总,快为孩子收藏!

1

一二年级

1.巧算与速算:

寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。另外,计算与速算是各种后续问题学习的基础。学好数学,首先就要过计算这关。

2.学习简单的枚举法:

用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。将抽象问题形象化,引导孩子去主动思考。

奥数越早入门越容易,并且对于一二年级的孩子来说,兴趣最重要,所以可以通过一些数字游戏来对孩子进行引导。

2

三四年级

这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,孩子的计算能力,认知能力,逻辑分析能力会有很大的提高,学习内容的难度和广度有所增加,各种竞赛任务和招生考试的成绩重要性大大增加, 是斩获各种杯赛、竞赛荣誉的关键时期。

1. 运用运算定律及性质速算与巧算:

能否又快又准的算出答案,是历年数学竞赛考察的一个基本点,要加强加法与乘法运算定律,其中应用乘法分配率是竞赛中考察巧算的一大重点;除此之外,竞赛中还时常考察带符号“搬家”与添括号/去括号这两种通过改变运算顺序进而简便运算的思路。例如:17×5+17×7+13×5+13×7这种技巧性试题。

重点题型有多位数的计算,小数的基本运算,小数的简便运算等。其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。

2. 理解假设思想解决鸡兔同笼问题:

鸡兔同笼问题源于我国1500年前左右的伟大数学著作《孙子算经》,这一类问题要求孩子要有假设思想,思路要很清晰。

3. 平均数应用题:

“平均数”这个数学概念在同学们的日常学习和生活中经常用到。如计算全班同学的数学“平均成绩”,同学与爸爸妈妈三个人的“平均年龄”等等,都是会经常碰到的求平均数的问题。

4. 和差倍应用题:

为了弄清题目中两种量彼此间的关系,需要孩子学习使用画线段图的方法以线段的相对长度来表示两种量间的关系,找到解题的途径。

和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量和÷对应的倍数和=“1”倍量;

差倍问题就是已知大小两个数的差和它们的倍数关系,求大小两个数的应用题,一般可应用公式:数量差÷对应的倍数差=“1”倍量;

和差问题是已知大小两个数的和与两个数的差,求大小两个数的应用题一般可应用公式:大数=(数量和+数量差)÷2,小数=(数量和-数量差)÷2。

5. 行程问题:

行程问题要掌握以下各类的问题:相遇问题、追及问题、火车相遇问题、流水行船问题、多次相遇问题等。要求孩子对基本的相遇问题和追及问题有非常深刻的了解,在学习过程中经常有同学到六年级了对于追及问题中两个人所走的时间是否相等还经常容易出错。

6. 排列组合:

排列组合是对初期所学的加法原理和乘法原理两讲的一个升华。需要孩子在排列组合中首先要对排列组合的概念、排列数与组合数的计算、排列与组合的区别等有很好的理解,尤其是排列和组合的区分上,需要对一些经典例题的掌握从而来理解排列和组合的区别。

7. 几何计数与周期性问题:

几何计数和周期性问题也是各大竞赛和入学考试常见题型,尤其是很多综合题同时包含数论和周期性问题的相关知识点,是竞赛和备考的重中之重。尤其是吧周期性问题常和等差数列、数论结合在一起,孩子在做题题时经常容易出错,需要在这方面的加大做题量。

对于三四年级,要打牢基础,重视应用题,要有技巧的学习,同时也要找到培养适合自己的学习方法。在小学四年级的时候,要注重孩子对解题方法的积累,多做难题,同时要注重整数和小数的计算。

3

五六年级

五六年级这个阶段的奥数学习应该有更强的针对性,针对孩子的实际情况和目标选择合适的班型。从最近的一些学校的考试可以看出一个趋势,就是题量大,时间段,对于单位时间内的做题效率有很高的要求,这个效率体现在两个方面,就是速度和正确率。

1. 递推法:

递推方法就是从最简单的情况入手,通过处理简单的问题,我们可以从中得到规律或者诀窍,从而来解决复杂的问题。

比如说:平面上2008条直线最多有几个交点?同学们第一眼看到这个问题时,肯定会想画2008条直线相交然后再数交点个数,那该是多麻烦啊!

其实我们可以先来解决简单点的情况,分别找到1条、2条、3条、……以此类推,这些直线有多少个交点就会出现一个规律。

2.行程问题:

这个时期的奥数行程问题可以细分为:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上行程等等。只要掌握每个小类型中的诀窍,形成一种分析思路,复杂的行程问题也无非是这些类型的变形而已。

3.数论问题:

数论是五年级的核心知识,要解决抽象而又杂乱的的数论问题,首先得掌握数论的基本知识:数的奇偶性、约数(现在叫因数)、倍数、公约数及最大公约数、公倍数及最小公倍数、质数、合数、分解质因数、整除、余数及同余等。这些基本知识点里会出一些数论综合试题。

4.有抽屉原理:

生活中有很多有趣的事情,比如说:把4个苹果放到3个抽屉里,无论你怎么放,总有某个抽屉里至少有2个苹果,这就是抽屉原理。

5.图形面积计算:

求图形的面积一直是奥数中的一个难点,对于这类题要掌握好各种基本图形的面积计算公式,也必须熟记一些重要结论:比如三角形的等积变形、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中边与面积的关系。

6.分数百分数问题,比和比例:

这些重点内容,在历年各个学校测试中所占比例非常高。

7.行程问题:

常常作为压轴题出现,是应用题里最重要的内容,综合考察孩子对比例,方程的运用以及分析复杂问题的能力,所以,重点应该掌握以下内容:

路程速度时间三个量之间的比例关系

用比例的方法分析解决一般的行程问题

重点是学会如何去分析一个复杂的题目

8.几何问题:

几何问题是各个学校考察的重点内容,具体的平面几何如直线形问题和圆与扇形;立体几何里分为表面积和体积两大部分内容。

|来源本文来源于网络。版权归原作者所有,若侵删。返回搜狐,查看更多

责任编辑:

声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
免费获取
今日搜狐热点
今日推荐